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Dynamic simulations of the Kosterlitz-Thouless phase transition
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Based on the short-time dynamic scaling form, a dynamic approach is proposed to numerically tackle the
Kosterlitz-Thouless phase transition. Taking the two-dimensighaimodel as an example, the exponential
divergence of the spatial correlation length, the transition temperdigre and all critical exponents are
computed. Compared with Monte Carlo simulations in equilibrium, we obtain data at temperatures closer to
Tkt . [S1063-651X99)50802-7

PACS numbsg(s): 02.70.Lq, 75.10.Hk, 64.60.Fr, 64.60.Ht

The Kosterlitz-Thoules$KT) phase transition is an im- However, it is not clear whether the short-time dynamic
portant kind of phase transition in natuf#,2]. When the approach can systematically go beyond critical systems with
temperature approaches the transition temperatysefrom  a second order phase transition, even though an attempt has
above, the spatial correlation length divergegonentially  been made with the KT transitions and the spin glass transi-
rather than by a power law in a second order phase transitiofjons [26—29. For systems with a KT transition, for ex-
Below Ty, the system remaingitical in the sense that the ample, owing to theabsenceof symmetry breaking and to
spatial correlation length is divergent. No real long rangehe fact that the system remains critical bel@w;, a clear
order emerges in the whole temperature regime. Importarfigna| as for a second order phase transif2ih19,24 does
examples of systems with a KT transition are the classicaj exst for the transition temperatufgy. The exponent
XY-type models, quantum Heisenberg models, hard disk,y1 have not been determined. Standard techniques de-

models, and other relevant fluid systems as well as field thec{ieloped for the second order phase transitions do not apply

ries. .
It is well known that due to the exponential divergence athere. On the other hand, besides the exponents, whether one

the transition temperature, numerical simulations of critical’®" obtaln other cr_ltlcal prop(_artles of the equilibrium St?‘te'
systems with a KT transition suffer severely from critically especu_illy the spanal correlation length from the short-time
slowing down. For example, to compute the spatial correladYnamics, remains unknown, even fsecond ordemphase
tion length of the two-dimensional classic&Y model, even ~transitions. o ,
with the cluster algorithm and the over-relaxed algorithm, [N this Rapid Communication we propose a short-time
one has only reached the temperafiire0.98, which is still dynamic approach to the KT transition using the two-
fairly far from Txr, estimated to be around 0.89 to 0.90 dimensionalXY model as an example. From the short-time
[3-5]. If some quenched randomness is added to the systerflynamic scaling, we extract thepatial correlation lengttof
e.g., in the fully frustratecX'Y model, the situation becomes the equilibrium state. From the spatial correlation length we
even more complicateb—10. estimate the transition temperatufg; and the static expo-
Recently much progress has been made in critical dynanfientr. With Tyt at hand, the static exponentand dynamic
ics. It has been discovered that universal dynamic scalingxponentz are obtained from power law behavior of the
behavior a|ready emerges in thmcroscopicshort-time re- magnetization and Binder cumulant. Our choice for Xé
gime, after a microscopic time scalg;. [11-19. More in-  model was based solely on the substantial amount of com-
teresting and important is that the static exponents, originallparative data concerning Monte Carlo simulations in equilib-
defined in equilibrium, enter the short-time dynamic scaling.flum.
This provides a possible way for extracting these exponents The XY model in two dimensions is defined by the
from the short-time dynamic scaling behavi@8]. Since the = Hamiltonian
measurements are carried out in the macroscopic short-time
regime, the method is free from critical slowing down. H=
Such a short-time dynamic approach has been systemati-
cally investigated for critical dynamic systems witlsecond
order phase transition. It has been verified in the simple IsingvhereS = (S x,Si,y) is a planar unit vector at siteand the
and Potts modd]20,21] and recently applied successfully to sum is over the nearest neighbors. In our notation, the cou-
general and complex systems as nonequilibrium dynamigling constant is already absorbed in the temperature. Large
systems[22,23, the chiral degree of freedom in the fully scale Monte Carlo simulations in equilibrium have been per-
frustratedXY model[24], and lattice gauge theof25]. The  formed to understand the properties of the phase transition
critical exponents as well as the critical temperature can bg3—5]. The spatial correlation length and susceptibilityy
extracted either from the power law behavior of the observhave been calculated in a temperature intef@a98,1.43
ables at the early times or from the finite size scaling. Comwith lattice sizes up to 512. The results support a KT singu-
pared with the nonlocal cluster algorithms, the dynamic apiarity for the spatial correlation length
proach does study the dynamic properties of the original
local dynamics. &(r)~explbr™") (2

—| =

>SS, (6]
(ij)
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TABLE 1. Our results of the exponents afgt obtained in the temperature interal;, T,] in comparison with those in Ref5]
(denoted by . Tkt and v* of Ref.[5] are from data of the susceptibility. The second and fourth columns are the results with & fixed
=0.5 as input. Our values @ and » are measured &xt=0.894 andy of Ref.[5] is estimated with finite size scaling and Monte Carlo
renormalization group methods 8+=0.894 alsobz for Ref.[5] is calculated by taking our as input.

[T, T,] [0.94,1.07 [0.94,1.07 [0.98,1.43" [0.98,1.43"
Tkt 0.8942 0.8926 0.8953 0.8914
bz 4.12 3.82 3.67 3.38
v 0.48 0.5 0.47 0.5
Thr 0.8871 0.8961
v* 0.57 0.5
z 1.9603)
7 0.2384) 0.2385)
and for the susceptibilityy(7)~ &>~ 7(7), with 7~(T— modified by the scaling functioM[ 1t~ Y?¢(7)]. This fact

Tk71)/ Tkt as the reduced temperature. However, unconean be used for the determinatigf(7) and the exponent
strained four-parameter fits to the data do not yield com-/z.
pletely satisfactory resul{$]. The measured values ofand In Fig. 1, the time evolution of the magnetization is dis-
Tkt from the data of¢ and y are not very consistent and played on a log-log scale for different temperatures. We per-
stable. » estimated fromy(7)~ &2~ "(7) is above 0.7 and form Monte Carlo simulations up to a timg, where there is
too big compared with the theoretical predictigr=0.25.  visible deviation from the power law behavior. Actually, in
The temperatures for the available dat&ahdy are still far ~ the short-time regime of the dynamic evolution, the magne-
from the transition temperatufB¢t estimated to be around tization itself is more or less self-averaged. We may increase
0.89-0.90(for details, see Table | and RdE]). However, the lattice size without too much extra fluctuation. What re-
simulations in equilibrium with lower temperatures are verystricts our simulations to very low temperatures is onply
difficult. Our longest updating time i,=50000 at the temperature
We will demonstrate that from the short-time dynamic T=0.94. To obtain the curve fofF=0.98, one needs eight
scaling, the spatial correlation lenggtr) of the equilibrium  days in ALPHA station 500400 MH2), while ten times
state can be extracted with relatively small lattices. This isnore forT=0.94.

because th@onequilibriumspatial lengthé(t, ) is small in Now from a scaling collapse of two curves with a pair of
the short-time regime of the dynamic evolution. Therefore temperaturesT,,T,), we estimate the ratig]/¢5 and 7/z.
simulations can be performed at lower temperatures. Here &, and ¢, are the values of(7) at the temperatureg,;

In this paper we consider only the dynamics of madlel  and T,, respectively. In Fig. 2, such a scaling plot is dis-
which is relaxational without energy and magnetization conplayed for (T, T,) =(0.955,0.965). We multiply the magne-
servation. Starting from aorderedinitial state, e.g., aIS tization M(t;,£,) by an overall factob® and rescald; to
=(Six,Sy)=(1,0), the system is updated at the temperat;/b. According to the scaling form(4) this rescaled
ture aboveT 1 with the standard Metropolis algorithmWe — M(ty,§,) is equal toM(t,,¢,) if and only if b= ¢7/&5 and
stop updating at a certain Monte Carlo titpeand repeat the
procedure. Total samples for average is from 800 to 1200 for
lattice sizeL =256 and above 400 far=512. The lattice 0.6
sizeL=256 is used in simulations for temperatures frdm
=1.07 down to 0.975, whil& =512 fromT=0.97 to 0.94. M
Extra simulations with other lattice sizes confirm that our
data have no visible finite size effect.

The observable we measure is the magnetization defined 04
as

1
M<t>=pr<2i s,x<t>>. (3

From a general physical view point of the renormalization
group transformation, the magnetizatibi(t) is subject to a

scaling form 0.2 \ ‘
100 1000 ¢ 10000

M[t,&(n)]=t"">M[1t~&(7)]. 4)
FIG. 1. Time evolution of the magnetization in the log-log scale.
When the temperature is @k (or below, i.e., 7=0, §(7)  The temperatures are 0.94, 0.95, 0.955, 0.96, 0.965, 0.97, 0.975,
—o, and M(t) undergoes a power law decayi(t)  0.98, 0.99, 1.00, 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, and (frbh
~t~7% However, for 7>0, the power law behavior is above.



PRE 59

DYNAMIC SIMULATIONS OF THE KOSTERLITZ-. ..

0.7

0.5

0.3

RAPID COMMUNICATIONS

R1353

- [5]. In our dynamic approach, we perform the scaling col-

100

1000

that of T,=0.965.

M(t,,€,) and the rescaled(t,,£;), we determinegi/&;

t

lapse of the magnetization with two temperatures that are not
too far away from each other and therefore the dependence
of n/z on the temperature is actually considered. However,
we assume andbz to be independent of the temperature.

In Table II, the measured ratio af;/& and exponent
nl2z for different pairs of temperatures (,T,) are listed.
Errors are estimated by dividing the total samples for the
time-dependent magnetization into two groups only. The
lowest temperature we reachTis=0.94. For comparison, in
Table Il available values of;/ & from Ref.[5] (denoted by
1) are also given. They are slightly smaller than our results.
We observe that, as the temperature decreases, these values
of /&5 do not increase sufficiently smoothly. Real errors
of these datdand also our dajamight be somehow bigger
than given in the table. Taking=1.96 in Table | as input,

10000 the resultingn from #/2z in Table Il is around 0.26 to
0.31. As expectefb], we see a tendency that will become
FIG. 2. Scaling plot of the magnetization with a pair of tempera-2pproximately 0.25 as the temperature approadhgs
tures (T,,T,). The upper and lower solid lines correspond to tem-
peraturesT,=0.955 andT,=0.965. The circles are also the mag- EQ. (2) and estimate the transition temperatiitg, the ex-
netization withT,=0.955, but are rescaled to have the best fit with ponenty, and the parametdrz. The best results are given in
Table | in comparison with those from simulations in equi-
librium. Our results are fitted from a relatively lower tem-
a=mnl2z. Therefore, searching for the best fit betweenperature interval0.94, 1.07, and agree well with those ob-

Now we fit the data in Table Il to the exponential form in

tained in a temperature interved.98, 1.43 in Ref. [5], in

and »/2z. In the figure, the circles represent the rescaledboth cases of an unconstrained fit and a fit with a fixed
=0.5. However, as pointed out by the authors of Rigfs4],

M(tq,£&,) best fitted toM(t,,&5).

Theoretically, the exponentg and z are defined at the
transition temperatur@y+. The exponentr and the expo-
nential singularity in Eq.(2) are defined for temperatures
above, but in the close neighborhood, Bf;. If the tem-
perature is fairly abové@ 1, in principle, all the exponents

for the unconstrained fit, the minimum in the parameter
space is not very stable in the directionsiofndbz. It is
somehow by chance that our valueof 0.48 is so close to
v=0.47 obtained in Ref5]. When we varyT, in the fitting
interval[0.94T,] from 1.07 to smaller values, the exponent

and the parameters may have some dependence on thev first drops down and then rises again after arodnd
temperature. Usually this dependence on the temperature is1.00. These fluctuations very probably come from the fact
neglected, otherwise the situation becomes too complicateithat we do not have sufficient data points and accuracy for

TABLE II. Measured ratiogZ/ £ and exponenty/2z for different pairs of temperatures. Values & ¢2" are calculated from data in
Table VIII of Ref.[5].

(T,,T) (0.940, 0.95D (0.950, 0.955 (0.950, 0.96D (0.955, 0.96D (0.955, 0.965 (0.960, 0.965
18 5.7539) 2.0406) 3.6107) 1.81(09) 3.0506) 1.6504)
nl2z 0.068011) 0.069516) 0.069417) 0.068221) 0.067412) 0.065@21)
(T,,To) (0.960, 0.97D (0.965, 0.97D (0.965, 0.975 (0.970, 0.975 (0.97, 0.98 (0.97, 0.99
&1 2.6507) 1.5603) 2.3502) 1.5101) 2.16545) 4.3511)
nl2z 0.067121) 0.069118) 0.067612) 0.068508) 0.068217) 0.069922)
(T1,T) (0.975, 0.98 (0.98, 0.99 (0.98, 1.00 (0.99, 1.00 (0.99, 1.01 (1.00, 1.01
&1 1.47003) 1.96543) 3.6707) 1.84040) 3.2206) 1.71022)
g1t 1.83984) 1.60561) 1.60039)
nl2z 0.066820) 0.072728) 0.076815) 0.075322) 0.077414) 0.076226)
(T,,To) (1.00, 1.02 (1.01, 1.02 (1.01, 1.03 (1.02, 1.03 (1.02, 1.03 (1.03, 1.03
18 2.69029) 1.56408) 2.33421) 1.47410) 2.13120) 1.42407)
g1t 1.45336) 1.43434) 1.35139)
nl2z 0.078424) 0.078111) 0.076819) 0.077313) 0.077711) 0.075416)
(T,,T>) (1.03, 1.05 (1.04, 1.03 (1.04, 1.06 (1.05, 1.06 (1.05, 1.07 (1.06, 1.07
&1 1.96417) 1.38007) 1.83219) 1.32910) 1.72613) 1.3126)
nl2z 0.077818) 0.083542) 0.077712) 0.070546) 0.078119) 0.090G24)
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each data point. The estimate ®k; is relatively stable. 1 - ”
However, the impression is that the valueTgf; might be .
slightly bigger thanT1=0.8942, given in the table, if the m L,
fitting can confidently be performed in the really close neigh- i

borhood of Tk . _7

With the transition temperaturé; at hand, we proceed

to measure the magnetizatitvh and its second momem (?) .
at Txr. To seek the dynamic exponent we construct a .
Binder cumulantU=M®)/M?— 1. Finite size scaling analy- -
sis leads to the short-time behav{@6,19,24 s

u(t)~t9z (5) e

Finally, an accurate value af/2z can be obtained from the .
power law decay of the magnetizatidh(t) ~t~ 7% [see Eq. -
(4)]. In Fig. 3,M(t) andU(t) have been plotted on a log-log
scale. Since our measurements only extent=@50, a lat- .
tice sizeL =64 is sufficient. Total samples for average are 100 ¢ 500

12 000. From the slopes of the curves in the figure we mea-

sured/z and 7/2z, then calculate and 5. The results are FIG. 3. Time evolution of the magnetizatidn and Binder cu-
included in Table I. Ourm=0.238(4) coincides with the best mulantU at Tr=0.894 in the log-log scale. To plot the figute
estimaten=0.235(5) in equilibrium. has been multiplied by a constant 200.

In conclusion, a dynamic approach is proposed to NUMETG here thenonequilibriumspatial correlation length is small,

cally tackle the Kosterhtz-Thou.Igss phase transition. W&yve do not encounter the difficulties of generating indepen-
demonstrate that not only the critical exponents but also thaent configurations. Compared with the simulations in equi-

sp_atial correlation length _of the equili_brium state can be Ob1ibrium, we can perform simulations at the temperatures
tained from the short-ime dynamics. Taking the two- o toTk7. This method can, in principle, be applied or

dmensu;r;zthY m?dlel as aln t_exarlnplet,hthe ex?onf:nél?l d“’?{}' eneralized to other kinds of phase transitions as second or-
gence ol the spatial correlation fength 1S extracted from er phase transitions and spin glass transitions.

short-time dynamic scaling. The transition temperaflie,
the static exponents and », as well as the dynamic expo-  The work was supported in part by the Deutsche Fors-
nentz, are then estimated. Since the measurements are cathungsgemeinschaft under Grant Nos. Schu 95/9-1 and
ried out in the short-time regime of the dynamic evolution, SFB 418.
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