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Dynamic simulations of the Kosterlitz-Thouless phase transition
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Based on the short-time dynamic scaling form, a dynamic approach is proposed to numerically tackle the
Kosterlitz-Thouless phase transition. Taking the two-dimensionalXY model as an example, the exponential
divergence of the spatial correlation length, the transition temperatureTKT , and all critical exponents are
computed. Compared with Monte Carlo simulations in equilibrium, we obtain data at temperatures closer to
TKT . @S1063-651X~99!50802-7#

PACS number~s!: 02.70.Lq, 75.10.Hk, 64.60.Fr, 64.60.Ht
-

tio

g
ta
ic
is
e

a
ca
lly
la

m

0
te
s

am
lin

al
ng
n

tim

a

in
to
m
y

b
rv
m
ap
ina

ic
ith

t has
nsi-
-

de-
pply
r one
te,
me

e
o-
e

we

e

om-
lib-

e

ou-
rge
er-
ition

u-
The Kosterlitz-Thouless~KT! phase transition is an im
portant kind of phase transition in nature@1,2#. When the
temperature approaches the transition temperatureTKT from
above, the spatial correlation length divergesexponentially,
rather than by a power law in a second order phase transi
Below TKT , the system remainscritical in the sense that the
spatial correlation length is divergent. No real long ran
order emerges in the whole temperature regime. Impor
examples of systems with a KT transition are the class
XY-type models, quantum Heisenberg models, hard d
models, and other relevant fluid systems as well as field th
ries.

It is well known that due to the exponential divergence
the transition temperature, numerical simulations of criti
systems with a KT transition suffer severely from critica
slowing down. For example, to compute the spatial corre
tion length of the two-dimensional classicalXY model, even
with the cluster algorithm and the over-relaxed algorith
one has only reached the temperatureT50.98, which is still
fairly far from TKT , estimated to be around 0.89 to 0.9
@3–5#. If some quenched randomness is added to the sys
e.g., in the fully frustratedXY model, the situation become
even more complicated@6–10#.

Recently much progress has been made in critical dyn
ics. It has been discovered that universal dynamic sca
behavior already emerges in themacroscopicshort-time re-
gime, after a microscopic time scaletmic @11–19#. More in-
teresting and important is that the static exponents, origin
defined in equilibrium, enter the short-time dynamic scali
This provides a possible way for extracting these expone
from the short-time dynamic scaling behavior@19#. Since the
measurements are carried out in the macroscopic short-
regime, the method is free from critical slowing down.

Such a short-time dynamic approach has been system
cally investigated for critical dynamic systems with asecond
order phase transition. It has been verified in the simple Is
and Potts model@20,21# and recently applied successfully
general and complex systems as nonequilibrium dyna
systems@22,23#, the chiral degree of freedom in the full
frustratedXY model@24#, and lattice gauge theory@25#. The
critical exponents as well as the critical temperature can
extracted either from the power law behavior of the obse
ables at the early times or from the finite size scaling. Co
pared with the nonlocal cluster algorithms, the dynamic
proach does study the dynamic properties of the orig
local dynamics.
PRE 591063-651X/99/59~2!/1351~4!/$15.00
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However, it is not clear whether the short-time dynam
approach can systematically go beyond critical systems w
a second order phase transition, even though an attemp
been made with the KT transitions and the spin glass tra
tions @26–29#. For systems with a KT transition, for ex
ample, owing to theabsenceof symmetry breaking and to
the fact that the system remains critical belowTKT , a clear
signal as for a second order phase transition@21,19,24# does
not exist for the transition temperatureTKT . The exponentn
andTKT have not been determined. Standard techniques
veloped for the second order phase transitions do not a
here. On the other hand, besides the exponents, whethe
can obtain other critical properties of the equilibrium sta
especially the spatial correlation length from the short-ti
dynamics, remains unknown, even forsecond orderphase
transitions.

In this Rapid Communication we propose a short-tim
dynamic approach to the KT transition using the tw
dimensionalXY model as an example. From the short-tim
dynamic scaling, we extract thespatial correlation lengthof
the equilibrium state. From the spatial correlation length
estimate the transition temperatureTKT and the static expo-
nentn. With TKT at hand, the static exponenth and dynamic
exponentz are obtained from power law behavior of th
magnetization and Binder cumulant. Our choice for theXY
model was based solely on the substantial amount of c
parative data concerning Monte Carlo simulations in equi
rium.

The XY model in two dimensions is defined by th
Hamiltonian

H5
1

T (̂
i j &

S¢ i•S¢ j , ~1!

whereS¢ i5(Si ,x ,Si ,y) is a planar unit vector at sitei and the
sum is over the nearest neighbors. In our notation, the c
pling constant is already absorbed in the temperature. La
scale Monte Carlo simulations in equilibrium have been p
formed to understand the properties of the phase trans
@3–5#. The spatial correlation lengthj and susceptibilityx
have been calculated in a temperature interval@0.98,1.43#
with lattice sizes up to 512. The results support a KT sing
larity for the spatial correlation length

j~t!;exp~bt2n! ~2!
R1351 ©1999 The American Physical Society
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TABLE I. Our results of the exponents andTKT obtained in the temperature interval@T1 ,T2# in comparison with those in Ref.@5#
~denoted by †!. TKT* andn* of Ref. @5# are from data of the susceptibility. The second and fourth columns are the results with a fin
50.5 as input. Our values ofz andh are measured atTKT50.894 andh of Ref. @5# is estimated with finite size scaling and Monte Car
renormalization group methods atTKT50.894 also.bz for Ref. @5# is calculated by taking ourz as input.

@T1 ,T2# @0.94,1.07# @0.94,1.07# @0.98,1.43#† @0.98,1.43#†

TKT 0.8942 0.8926 0.8953 0.8914
bz 4.12 3.82 3.67 3.38
n 0.48 0.5 0.47 0.5

TKT* 0.8871 0.8961
n* 0.57 0.5

z 1.96~3!

h 0.238~4! 0.235~5!
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and for the susceptibilityx(t);j22h(t), with t;(T2
TKT)/TKT as the reduced temperature. However, unc
strained four-parameter fits to the data do not yield co
pletely satisfactory results@5#. The measured values ofn and
TKT from the data ofj and x are not very consistent an
stable.h estimated fromx(t);j22h(t) is above 0.7 and
too big compared with the theoretical predictionh50.25.
The temperatures for the available data ofj andx are still far
from the transition temperatureTKT estimated to be aroun
0.89–0.90~for details, see Table I and Ref.@5#!. However,
simulations in equilibrium with lower temperatures are ve
difficult.

We will demonstrate that from the short-time dynam
scaling, the spatial correlation lengthj~t! of the equilibrium
state can be extracted with relatively small lattices. This
because thenonequilibriumspatial lengthj(t,t) is small in
the short-time regime of the dynamic evolution. Therefo
simulations can be performed at lower temperatures.

In this paper we consider only the dynamics of modelA,
which is relaxational without energy and magnetization c
servation. Starting from anordered initial state, e.g., allS¢ i
5(Si ,x ,Si ,y)5(1,0), the system is updated at the tempe
ture aboveTKT with the standard Metropolis algorithm. We
stop updating at a certain Monte Carlo timetm and repeat the
procedure. Total samples for average is from 800 to 1200
lattice sizeL5256 and above 400 forL5512. The lattice
sizeL5256 is used in simulations for temperatures fromT
51.07 down to 0.975, whileL5512 fromT50.97 to 0.94.
Extra simulations with other lattice sizes confirm that o
data have no visible finite size effect.

The observable we measure is the magnetization defi
as

M ~ t !5
1

Ld K (
i

Si ,x~ t !L . ~3!

From a general physical view point of the renormalizati
group transformation, the magnetizationM (t) is subject to a
scaling form

M @ t,j~t!#5t2h/2zM @1,t21/zj~t!#. ~4!

When the temperature is atTKT ~or below!, i.e., t50, j(t)
→`, and M (t) undergoes a power law decay,M (t)
;t2h/2z. However, for t.0, the power law behavior is
-
-

s

,

-

-

or

r

ed

modified by the scaling functionM @1,t21/zj(t)#. This fact
can be used for the determinationjz(t) and the exponen
h/z.

In Fig. 1, the time evolution of the magnetization is di
played on a log-log scale for different temperatures. We p
form Monte Carlo simulations up to a timetm where there is
visible deviation from the power law behavior. Actually,
the short-time regime of the dynamic evolution, the mag
tization itself is more or less self-averaged. We may incre
the lattice size without too much extra fluctuation. What
stricts our simulations to very low temperatures is onlytm .
Our longest updating time istm550 000 at the temperatur
T50.94. To obtain the curve forT50.98, one needs eigh
days in ALPHA station 500~400 MHz!, while ten times
more forT50.94.

Now from a scaling collapse of two curves with a pair
temperatures (T1 ,T2), we estimate the ratioj1

z/j2
z andh/z.

Herej1 andj2 are the values ofj~t! at the temperaturesT1
and T2 , respectively. In Fig. 2, such a scaling plot is di
played for (T1 ,T2)5(0.955,0.965). We multiply the magne
tization M (t1 ,j1) by an overall factorba and rescalet1 to
t1 /b. According to the scaling form~4! this rescaled
M (t1 ,j1) is equal toM (t2 ,j2) if and only if b5j1

z/j2
z and

FIG. 1. Time evolution of the magnetization in the log-log sca
The temperatures are 0.94, 0.95, 0.955, 0.96, 0.965, 0.97, 0
0.98, 0.99, 1.00, 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, and 1.07~from
above!.
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a5h/2z. Therefore, searching for the best fit betwe
M (t2 ,j2) and the rescaledM (t1 ,j1), we determinej1

z/j2
z

and h/2z. In the figure, the circles represent the resca
M (t1 ,j1) best fitted toM (t2 ,j2).

Theoretically, the exponentsh and z are defined at the
transition temperatureTKT . The exponentn and the expo-
nential singularity in Eq.~2! are defined for temperature
above, but in the close neighborhood, ofTKT . If the tem-
perature is fairly aboveTKT , in principle, all the exponents
and the parametersb may have some dependence on t
temperature. Usually this dependence on the temperatu
neglected, otherwise the situation becomes too complica

FIG. 2. Scaling plot of the magnetization with a pair of tempe
tures (T1 ,T2). The upper and lower solid lines correspond to te
peraturesT150.955 andT250.965. The circles are also the mag
netization withT150.955, but are rescaled to have the best fit w
that of T250.965.
d

is
ed

@5#. In our dynamic approach, we perform the scaling c
lapse of the magnetization with two temperatures that are
too far away from each other and therefore the depende
of h/z on the temperature is actually considered. Howev
we assumen andbz to be independent of the temperature

In Table II, the measured ratio ofj1
z/j2

z and exponent
h/2z for different pairs of temperatures (T1 ,T2) are listed.
Errors are estimated by dividing the total samples for
time-dependent magnetization into two groups only. T
lowest temperature we reach isT50.94. For comparison, in
Table II available values ofj1

z/j2
z from Ref. @5# ~denoted by

†! are also given. They are slightly smaller than our resu
We observe that, as the temperature decreases, these v
of j1

z/j2
z† do not increase sufficiently smoothly. Real erro

of these data~and also our data! might be somehow bigge
than given in the table. Takingz51.96 in Table I as input,
the resultingh from h/2z in Table II is around 0.26 to
0.31. As expected@5#, we see a tendency thath will become
approximately 0.25 as the temperature approachesTKT .

Now we fit the data in Table II to the exponential form
Eq. ~2! and estimate the transition temperatureTKT , the ex-
ponentn, and the parameterbz. The best results are given i
Table I in comparison with those from simulations in equ
librium. Our results are fitted from a relatively lower tem
perature interval@0.94, 1.07#, and agree well with those ob
tained in a temperature interval@0.98, 1.43# in Ref. @5#, in
both cases of an unconstrained fit and a fit with a fixedn
50.5. However, as pointed out by the authors of Refs.@5, 4#,
for the unconstrained fit, the minimum in the parame
space is not very stable in the directions ofn and bz. It is
somehow by chance that our value ofn50.48 is so close to
n50.47 obtained in Ref.@5#. When we varyT2 in the fitting
interval @0.94,T2# from 1.07 to smaller values, the expone
n first drops down and then rises again after aroundT2
51.00. These fluctuations very probably come from the f
that we do not have sufficient data points and accuracy

-
-

TABLE II. Measured ratioj1
z/j2

z and exponenth/2z for different pairs of temperatures. Values ofj1
z/j2

z † are calculated from data in
Table VIII of Ref. @5#.

(T1 ,T2) ~0.940, 0.950! ~0.950, 0.955! ~0.950, 0.960! ~0.955, 0.960! ~0.955, 0.965! ~0.960, 0.965!
j1

z/j2
z 5.75~38! 2.04~06! 3.61~07! 1.81~09! 3.05~06! 1.65~04!

h/2z 0.0680~11! 0.0695~16! 0.0690~17! 0.0682~21! 0.0674~12! 0.0650~21!

(T1 ,T2) ~0.960, 0.970! ~0.965, 0.970! ~0.965, 0.975! ~0.970, 0.975! ~0.97, 0.98! ~0.97, 0.99!
j1

z/j2
z 2.65~07! 1.56~03! 2.35~02! 1.51~01! 2.165~45! 4.35~11!

h/2z 0.0671~21! 0.0691~18! 0.0676~12! 0.0685~08! 0.0682~17! 0.0699~22!

(T1 ,T2) ~0.975, 0.98! ~0.98, 0.99! ~0.98, 1.00! ~0.99, 1.00! ~0.99, 1.01! ~1.00, 1.01!
j1

z/j2
z 1.47~03! 1.965~43! 3.67~07! 1.840~40! 3.22~06! 1.710~22!

j1
z/j2

z † 1.839~84! 1.605~61! 1.600~39!

h/2z 0.0668~20! 0.0727~28! 0.0768~15! 0.0753~22! 0.0774~14! 0.0762~26!

(T1 ,T2) ~1.00, 1.02! ~1.01, 1.02! ~1.01, 1.03! ~1.02, 1.03! ~1.02, 1.04! ~1.03, 1.04!
j1

z/j2
z 2.690~29! 1.564~08! 2.334~21! 1.474~10! 2.131~20! 1.424~07!

j1
z/j2

z † 1.453~36! 1.434~34! 1.351~38!

h/2z 0.0784~24! 0.0781~11! 0.0768~19! 0.0773~13! 0.0777~11! 0.0754~16!

(T1 ,T2) ~1.03, 1.05! ~1.04, 1.05! ~1.04, 1.06! ~1.05, 1.06! ~1.05, 1.07! ~1.06, 1.07!
j1

z/j2
z 1.964~17! 1.380~07! 1.832~19! 1.329~10! 1.726~13! 1.312~6!

h/2z 0.0778~18! 0.0835~42! 0.0777~12! 0.0705~46! 0.0781~19! 0.0900~24!
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each data point. The estimate ofTKT is relatively stable.
However, the impression is that the value ofTKT might be
slightly bigger thanTKT50.8942, given in the table, if the
fitting can confidently be performed in the really close neig
borhood ofTKT .

With the transition temperatureTKT at hand, we proceed
to measure the magnetizationM and its second momentM (2)

at TKT . To seek the dynamic exponentz, we construct a
Binder cumulantU5M (2)/M221. Finite size scaling analy
sis leads to the short-time behavior@26,19,24#

U~ t !;td/z. ~5!

Finally, an accurate value ofh/2z can be obtained from the
power law decay of the magnetizationM (t);t2h/2z @see Eq.
~4!#. In Fig. 3,M (t) andU(t) have been plotted on a log-lo
scale. Since our measurements only extend tot5750, a lat-
tice sizeL564 is sufficient. Total samples for average a
12 000. From the slopes of the curves in the figure we m
sured/z and h/2z, then calculatez and h. The results are
included in Table I. Ourh50.238(4) coincides with the bes
estimateh50.235(5) in equilibrium.

In conclusion, a dynamic approach is proposed to num
cally tackle the Kosterlitz-Thouless phase transition. W
demonstrate that not only the critical exponents but also
spatial correlation length of the equilibrium state can be
tained from the short-time dynamics. Taking the tw
dimensionalXY model as an example, the exponential div
gence of the spatial correlation length is extracted from
short-time dynamic scaling. The transition temperatureTKT ,
the static exponentsn and h, as well as the dynamic expo
nentz, are then estimated. Since the measurements are
ried out in the short-time regime of the dynamic evolutio
ie
-

a-

i-
e
e
-

-
-
e

ar-
,

where thenonequilibriumspatial correlation length is smal
we do not encounter the difficulties of generating indep
dent configurations. Compared with the simulations in eq
librium, we can perform simulations at the temperatu
closer toTKT . This method can, in principle, be applied o
generalized to other kinds of phase transitions as second
der phase transitions and spin glass transitions.

The work was supported in part by the Deutsche Fo
chungsgemeinschaft under Grant Nos. Schu 95/9-1
SFB 418.

FIG. 3. Time evolution of the magnetizationM and Binder cu-
mulantU at TKT50.894 in the log-log scale. To plot the figureU
has been multiplied by a constant 200.
ev.
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